COMMON OPERATORS

Frequently Used, Straightforward Behavior

Delroy A. Brinkerhoff


Presenter
Presentation Notes
Although a C++ program can use a wide variety of operators, some are more commonly used than are others and we begin our study with these common operators.


ASSIGNMENT OPERATOR

NOT the same as = in algebra
Stores the expression (i.e., the expression) on the right side in the variable on
the left side
Examples:
x =y +5;
inta=y+5;
intz=x=y+5;

w=x=y=z=0;



Presenter
Presentation Notes
The assignment operator is pretty straightforward as long as you remember that it doesn't behave in quite the same way as the equal symbol used in mathematics. The assignment operator stores the value represented by the expression on the right in the variable named on the left. It is also possible, but not required, to define and initialize a variable in a single statement.


ARITHMETIC OPERATORS

Generally behave as they do in algebra (i.e., as you would expect of them)
+ Addition

: Subtraction

g Multiplication

/ Division

% Modular (modulo, remainder)



Presenter
Presentation Notes
There are five arithmetic operators. While the first four are likely quite familiar to you, division does have a behavior that you need to be aware of, so we focus our attentions on the last two operators.


THE DIVISION OPERATOR

If one or both operands are floating point values (e.g., float or double), the
result is a floating point value

3.14 /2.7
1.0/3
1 /3.0

If both operands are integer (char, short, int, or long), the result is a truncated integer
| /3is0
999/ 1000is 0



Presenter
Presentation Notes
If one or both division operator operands are floating point numbers (float or double), then division operates as it would in mathematics. But if both operands are integers (char, short, int, or long), then the operation is carried out and returned as an integer. That means that any fractional or decimal value is lost! For example, 1/3 is 0, not 0.33333. The ANSI standard is that division truncates rather than rounds - that is, the decimal points are cut off and not rounded up. For example, 999/1000 is still zero rather than 1.


THE MODULAR OPERATOR

Also known as the remainder operator

Begin by performing long division but express the results as a quotient and a
remainder; discard the quotient; the result is the remainder: 11 % 4 = 3

© 06 © 9\/O¢ © 9\/0pe

© oY% |\e 9/\ g° o 9/\ o
9 o © o 9 @
® © ®



Presenter
Presentation Notes
The modular operator (also called modulo or remainder) is perhaps the least familiar operator in the previous list. Nevertheless, it is used quite a lot. Fortunately, the operation is easy to understand if we break it down into steps. Begin by performing long division, but halt when the value to the left of the decimal point is calculated. Any amount left over is the remainder and is the value that the modular operator produces.
In this example, we begin with 11 things (smiley faces) and calculate 11 mod 4 or in C++: 11 % 4. The first step is to divide 11 by 4 - that is, we form as many complete groups of 4 as possible. 4 goes into 11 twice - that is, we can form 2 groups of 4. Three smiley faces remain or are left over - they don't form a complete group of 4. So, 11 % 4 = 3.


CASTING OPERATOR

The compiler will automatically perform some type conversions, called a type
promotion:

double max = 95;
double x = sqrt(2);
Explicit cast:
int score = (int)95.5;
int score = int(95.5);
(double)score / 10
double(score) / 10 double(score / 10) 2222

(int)(3.14 + 2.7) (int)3.14 + 2.7 172



Presenter
Presentation Notes
It is sometimes necessary to convert one data type into another type. In some cases the compiler can do the conversion automatically; an automatic type conversion is called a type promotion or just a promotion. Recall that a numeric constant without a decimal point is treated as type int. So, in this example, the integer 95 is automatically promoted to a double so that it can be stored in the double variable max. Type promotions also take place with function arguments; the int 2 is promoted to a double 2, which is the expected argument type for the sqrt function.
Programmers can explicitly change one type to another with a casting operation. Java only has one casting notation while C++ has several, but only two are considered here. The original casting operator inherited from C is the parentheses. The complete operation encloses the destination type in the parentheses, which operates on the value immediately to the right. The newer functional notation treats the destination type as a function name and the original, uncast value as an argument. Recall that the compiler treats a numeric value with a decimal point as a double, so these examples convert a double 95.5 into an int 95 so that it can be stored in an int variable.
Do be mindful of the order of operation. In these examples, one operand is converted to a double before division takes place, which ensures that the division operation takes place using double arithmetic.
In this example, the division takes place before the cast operation, resulting in truncation.
In this example, the addition takes place first, then the result is cast to an int, resulting in an integer-valued expression.
Here, 3.14 is cast to 3 but then added to 2.7; this forces the integer 3 to be promoted to a double 3.0 so the addition can take place. The result is the double-valued expression 5.7.


LIMITS OF CASTING

Casting an int to a double is okay Informal Casting Rule:

Casting a double to an int is okay

What does it mean to To cast from one data type to another,
the two data types, the new and the
current types, must be "sort of the same"
Cast a string to an int to begin with.

Person to a Square

Cast an int to a string

A Square to a Person


Presenter
Presentation Notes
Casting is a useful type conversion operation, but some conversions don’t make any sense. In the previous examples, we converted integers to doubles and doubles to integers – both conversions make sense and are useful. But what if we wanted to convert an integer to a string or a string to an integer? Or if we have two classes, a Person and Square, would it make sense to convert one to the other?
These observations lead us to an informal but useful casting rule: To cast from one data type to another, the two data types, the new and the current types, must be "sort of the same" to begin with. For example, integers and doubles are “sort of the same” in the sense that both are numbers – just different kinds of numbers.
Converting numbers to strings or strings to numbers really is useful, but we can’t do it with casting. Later in the text we’ll see how to do these conversions and conversions between some classes.


	Common Operators
	Assignment Operator
	Arithmetic Operators
	The Division Operator
	The Modular Operator
	Casting Operator
	Limits of casting

